Global W2, p estimates for solutions to the linearized Monge–Ampère equations
نویسندگان
چکیده
In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for the Monge– Ampère equations. Mathematics Subject Classification (2010) 35J70 · 35B65 · 35B45 · 35J96
منابع مشابه
Boundary Harnack Inequality for the Linearized Monge-ampère Equations and Applications
In this paper, we obtain boundary Harnack estimates and comparison theorem for nonnegative solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are boundary versions of Caffarelli and Gutiérrez’s interior Harnack inequality for the linearized Monge-Ampère equations. As an application, we obtain sharp upp...
متن کاملBoundary Regularity for Solutions to the Linearized Monge-ampère Equations
We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.
متن کاملInterior Second Derivative Estimates for Solutions to the Linearized Monge–ampère Equation
Let Ω ⊂ Rn be a bounded convex domain and φ ∈ C(Ω) be a convex function such thatφ is sufficiently smooth on∂Ω and the Monge–Ampère measure det D2φ is bounded away from zero and infinity in Ω. The corresponding linearized Monge–Ampère equation is trace(ΦD2u) = f , where Φ := det D2φ (D2φ)−1 is the matrix of cofactors of D2φ. We prove a conjecture in [GT] about the relationship between Lp estima...
متن کاملON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS
This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .
متن کاملOn Boundary Hölder Gradient Estimates for Solutions to the Linearized Monge-ampère Equations
In this paper, we establish boundary Hölder gradient estimates for solutions to the linearized Monge-Ampère equations with Lp (n < p ≤ ∞) right hand side and C1,γ boundary values under natural assumptions on the domain, boundary data and the MongeAmpère measure. These estimates extend our previous boundary regularity results for solutions to the linearized Monge-Ampère equations with bounded ri...
متن کامل